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Abstract—From the assumption that the “universal law of the wall” is applicable to the turbulent
boundary layer for moderately accelerating and decelerating flows along a wall it is shown that the
thickness and the eddy diffusivity variation through the thickness can be derived at any Reynolds

number.

With the additional assumption that the eddy diffusivities for momentum and heat are equal
solutions were carried ‘out to the energy equation to obtain Stanton number variations with Reynolds
number for both uniform wall temperature and uniform wall heat flux. Two Reynolds number values
were considered at which the heating commenced, Prandtl numbers of 0-01, 0-7 and 10 were used and
these cases were examined for a number of arbitrarily chosen uniform pressure gradient parameters
corresponding to one dimensional diverging or converging ducts.

NOMENCLATURE
cross-sectional area of a converging or
diverging passage;
area of passage at x = 0;
local coefficient of friction
(= Tultpud);
specific heat at constant pressure;
local heat-transfer coefficient;
unheated starting length;

Prandtl number, v/a;
wall heat flux;

Reynolds number defined as T (us dx/v);
0

Reynolds number at the position / where
the step in temperature or heat flux
occurs;

local Stanton number;

temperature;

wall temperature;

free stream temperature (constant);
velocity in the x direction;

initial velocity at x = 0;

free stream velocity (a function of x);
dimensionless velocity, u/+/(tw/p);
velocity component in the y direction;
distance from the leading edge;

distance normal to the wall;

H.M.—4U

vt

dimensionless distance normal to ths
wall;

y* at the edge of the boundary layer
where ut = u};

Pressure gradient parameter,

(1/us) (dus/dR);

thermal molecular diffusivity, k/pCp;
(1/Pr) + (en/v);

step length in R;

step length in y+;

eddy diffusivity for heat;

eddy diffusivity for momentum;
dimensionless temperature

(r — tw)/(ts — tw);

dimensionless temperature, o/ pCoptiy;
kinematic viscosity;

density;

shear stress;

shear stress at the wall;

stream function.

INTRODUCTION

THIS ARTICLE is an extension to an earlier one [1]
in which a solution was presented to the problem
of the heat transfer from a plate at uniform
temperature, except for an initial length at the
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stream temperature, to a fluid stream moving
at constant velocity. The turbulent boundary
iayer was assumed to be established from the
leading edge.

It has since been realised that the same pro-
cedure can be applied to accelerating and
decelerating flows if the same basic assumptions
are postulated. These assumptions are:

1. The fluid physical properties are constant,
i.e. solutions are wvalid for only moderate
temperature differences and velocities.

2. The “‘universal law of the wall” applies
throughout the whole thickness of the boundary
layer. The model taken for the layer is that the
same relation between v+ and y* applies at any
value of R out to the value y,; when the velocity
u; is reached. Beyond this value of y, the di-
mensionless velocity .} is constant.

However, as R increases both y/ and u; in-
crease.

Log »*

F1G. 1. Assumed model of boundary layer.

3. The eddy diffusivities for momentum and
heat are equal.

The second assumption is certainly not valid
for flows with large pressure gradients such as in
a wide angle diffuser where breakaway soon
occurs or in a rapidly converging passage where
the boundary layer quickly returns to laminar
flow. With moderate pressure gradient however
there is some evidence [2-6] that this approxi-
mation is reasonable. Such cases occur in
practice with flows in the hydrodynamic entrance
region of ducts, between adjacent fins of a
finned tube and over bluff bodies such as cones
or wedges.
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OUTLINE OF PROCEDURE

Under the above assumptions it will be shown
that relations can be obtained, through the
momentum equation, which yield the variation
of thickness y; of the boundary layer with
Reynolds number, R. Also at any given
position the same analysis will give the variation
through the boundary layer of the eddy diffusivity
for momentum.

These relations enable a numerical solution
to be undertaken of the energy equation of the
boundary layer which gives Stanton number-
Reynolds number variations for different thermal
boundary conditions.

MOMENTUM EQUATION

The procedure to be followed in transforming
the momentum equation into the variables
ut and y* is very similar to that given in {1].
In this extension however the free stream
velocity u, is not constant but is a function of
x only.

The well-known form of the
equation for the boundary layer is

duy
s Ug e
p oy dx

momentum

i
u, +uv, -
ox oy

A stream function ¢ is chosen to satisty the
continuity equation

cu l or

h

G ) or

ax ooy

and
f)¢ f‘z{/;
N :
ay ox

Using the von Mises transformation yields,

du u or 1T

w e U (3
oy op “dy )

u

Introduction of the dimensionless variables
ut and y* bearing in mind that =, is a function
of x only yields

f\:y f == P
The assumption that u* is a function of -
only enables this to be written
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dys

- =yt

dy+
and substitution for i is now possible in (3) to
obtain,

dus

ou u 0
b g O

56 - ,cwu+ é}:

The Reynolds number is defined in the form

R=J’usdx
o

v

Since R is a function of x alone and using the
additional substitution

utis
u=- T
then (4) becomes
wt o (whus\ 1 o7 dus
u OR " pufus oyt ' dR
Expanding the L.H.S.
ut Tus out  wusut Ouf - ut dus
uf lut @R~ @2 @R T ut dR
_ 1 o du
T pufus oyt ' dR

The assumption of u* = f(y*) only means
(out/oR) = 0. The above may now be simplified
to yield

0
kT R o R
1 dus
wdr O

Now at the wall y* = 0, 7 = 7, and the above
may be integrated to any position y+

y
du+ T — Ty

(w2 dy+ =

1]

Tw
2 [y — [ ay]
]
where Z is the pressure gradient parameter
1 dug
us dR

Re-arranging

dut w
L1 Ga | erar—z ey
0
.
- j wy dy+] ®
i}
When
y=ytthent=0
Hence
dut

(u“‘)2 dyt =1—Z [Py}
dR
[
et

—u [wrer| @
[1]
Substituting
y'+
T=1— {1 +Z [ujj(u+)2dy+
Tw
o
y+
J @R dy+
—wryt]f
f (ut)? dy+

— ZI@F Ryt —up T @R ] ®)

Equation (7) essentially is an ordinary differential
equation which will yield a relation between
the dimensionless thickness y;} and Reynolds
number. Equation (8) for any chosen y; will
yield the variation of shear stress ratio.

The eddy diffusivity for momentum variation
follows from the shear stress ratio since

dyt
mzli_l (9)

v T dut

Equation (7) may be rewritten
y.+
4R [ @y ayr
dy; vt dy;t
7t — o z}
(10)
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Since
duf  duf dyS
dR ~dy; dR

The above equations are fairly general and
before proceeding to particular solutions it is
worth pointing out two features:

(a) It should be noticed that they apply to
any form of the u*-y* relation provided this
does not change along the R direction. It is
known that the relation obeys the well-known
logarithmic law near to the wall but departs
from this in the outer part-——sometimes referred
to as the wake. In this analysis the simple
assumption will be made that the logarithmic
form is obeyed for y*+ > 26 but an extension to
a different law for the outer part could be carried
out.

In the analysis Deissler’s form of the law of
the wall is used namely,

du
4+ D
0 <yt <26 dy+
1
1 4 0:0154 iyt [1 — exp (—0-0154 u*y*))

1y
26 < pt < ysf‘ ut — XY In (%}—) -+ 12-8426

36126

(b) The pressure gradient parameter
_ 1 dus

“ " us dR

will in general be a function of the Reynolds
number but in this analysis only constant values
of the parameter have been considered since the
analysis of this case is much simpler. For
external flows, such as flow over a wedge, the
parameter variation may be obtained from the
potential flow and therefore quite independently
of the boundary layer analysis. For internal
flows, however, there will be coupling between
the boundary layer analysis and the free stream
variation. For example, in the entrance region of
a duct with parallel walls the pressure drop is
itself caused by the boundary layer growth.
To include such coupling will complicate the
analysis but it should still be possible through the
same basic approach.

1f it be assumed that the boundary layers are
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thin, then constant values of the pressure gradient
parameter will yield solutions to straight sided
converging and diverging passages. The growth
of the boundary layer in practice, however,
implies that such solutions will only approxi-
mate to these cases, perhaps better for con-
vergences, and these solutions will, in fact,
apply to passages with walls with some slight,
but unknown, curvature.

To apply the general solutions to be obtained
to the simplified cases, useful expressions are.

l, duS 3 dA

us dR - ¢ dx (h

where ¢ = ugA (constant)
and

¢ X dAj
R g™ (4 ae) 02

where A; is the initial area of the duct.

FRICTION FACTOR, SHEAR STRESS AND
EDDY DIFFUSIVITY VARIATIONS

It is unrealistic to assume that the growth of
the boundary layer follows the universal law in
the early stages near the leading stage. Neverthe-
less, previous analyses in which the universal
law was assumed from the leading edge have
always shown good agreement with experi-
mental friction factors. Accordingly this assump-
tion has been used in this analysis and, although
equation (10) was solved for values of y; greater
than 26, a correction was made to the Reynolds
numbers for the growth out to y} == 26. This
correction was taken to be the same as for no
pressure gradient namely Ry .4 == 4759 (see
[1] for details).

Figure 2 shows solutions to equation (10)
namely, the R—y;, relation for various
constant values of the pressure gradient para-
meter. Note that the pressure gradient does not
affect the y; values near the leading edge. The
figure also shows the rapid growth of y} for
diverging flows (Z negative) and the converse
for converging flows.

Figure 3 shows shear stress ratios for an
arbitrary selection of pressure gradient para-
meters and at a particular value of y,;. Anim-
portant feature of the positive pressure gradient
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FiG. 2. Variation of dimz=nsionless thickness ys* with Reynolds numbzr R for arbitrary valuss of the
pressure gradient parameter Z.

parameter solutions is that at a sufficiently
large Reynolds number the values of y} become
constant. When this happens negative values of
shear stress (and hence of eddy diffusivity)
appear in the outer part of the boundary layer.
This, of course, is impossible and solutions were
discontinued beyond this point. Perhaps this
point has some relation to that of “reverse
transition” described by Kays and Moretti [7] at
which the boundary layer returns to laminar
flow.

Schubauer and Klebanoff [8] obtained varia-
tions of shear stress through the turbulent bound-
ary layer. It is not possible to infer the value of
¥4 to which their results apply but Fig. 4 gives
a comparison between their experimental results

and that obtained from the above relations for
certain y; and pressure gradient parameters. The
order of agreement is only moderate but it is
quite possible that the comparison could be
improved with the correct values of the pressure
gradient parameter and y;. Brand and Persen
[9] have also calculated shear stress variations
using very similar methods to those given here
but using Spalding’s form of the law of the wall
[10] and these agree well.

Local friction factors are plotted on Fig. 5 and
typical eddy diffusivity variations on Fig. 6. The
latter curves form the main object of this section
of the analysis and, together with the y;-R vari-
ation, permit a solution of the energy equation
to be attempted.
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F1G. 3. Dist_ribution of shear stress through the boundary FiG. 4. Comparison between predicted shear stress
layer for different values of the pressure gradient para- variations and the experiments of Schubauer and
meter Z (ys*+ = 1000). Klebanoff [8].
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FiGg. 6. Distribution of eddy diffusivity through the
boundary layer for different values of the pressure
gradient parameter Z. (y;* = 1000).

ENERGY EQUATION SOLUTION
The form of the energy equation, under the
assumptions of constant physical properties and
negligible dissipative effects, is the same as for
zero pressure gradient, namely,
6 o belo)
= 3y [(a + en) ay]

ot
u?}x+ Lay o

or, using the same transformations as in the

momentum equation,
o8 1 ep) b
r oot )

Subject to the boundary conditions discussed
below the equation was solved by a finite
difference technique which is described in detail
in {1]. The computer programme was arranged
to adjust the step length in Reynolds number to
conform to stability limitations.

Because the programme to solve the energy
cquation involves the momentum solution it
would have been too wasteful of computer time
to solve equation (10) every time a different

utul

Prandtl number or starting length was calculated.
Hence, sixth degree polynominal approximations
were used for the R—y; relation shown on Fig. 2.
The eddy diffusivity variations were calculated in
the programme through equations (8) and (9).
An initial choice of the increments of Ay*+ was
made and when the thermal boundary layer had
grown to span the initial range of y,} arrange-
ments were made in the programme to increase
the value of Ay*. The method used was to double
the increment and discard intermediate values of
the dimensionless temperature which produced a
slight disturbance in the results.

UNIFORM WALL TEMPERATURE
The boundary condition here is

=1 ally*+ x<l
=0 atyt=0 x>1/

The problem was solved in two parts: (a) a
solution using small steps of Ay+ which was
rather slow in increasing R; (b} a solution in
which a steady state was assumed in the layer up
to y*+ = 26.

A plot of results showed that solution (a) soon
merged with that of (b) and beyond this point the
solution (b) was used.

UNIFORM WALL HEAT FLUX
In this case it is necessary to define a new
dimensionless temperature ¢
where

uy is the initial free stream velocity where R = 0.
The energy equation takes the same form as
above with this dimensionless variable.
The boundary condition of uniform heat flux
must be introduced into the numerical method
and this was achieved as follows:

I e (3_’)
pCplUy N 23 ay y=0
o8’ u
. 7 TR i
B (Bay+)y+ 0 o Us
where
1 €n
B=rp+2
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Now the pressure gradient parameter

_ 1 dus

_—u,g dR
us=1u; at R=0
. 1 Us
..R-—Zln "

or

Us
s exp {(ZR)
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The calculation was again carried out in two
parts: (a) a solution near the nose using small
steps of Ay* = 2 out from the wall; (b) again
assuming a steady state solution for the layer
up to y*+ = 26.

In fact, it was found that the solution near
to the step was hardly affected by the pressure
gradient and only a few calculations of this type
were made.

For the assumption (b) we obtain

38

1)

ks 4 N s - ,‘! ;
( 39_) o U b= 0o ¥ 5 (ZR) J g
y*/yt=0 exp (ZR) Values of ’
The quantity on L.H.S. above appears in the 26 i
numerical method and is used to infer the next j f3 dy!

wall temperature (this is, in fact, the constant ¢

of reference 1).

L]
are given in [1] for different Prandtl numbers.
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FiG. 7. Stanton numbers for different pressure gradients with a step in uniform surface temperature at two

values of Ry,
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The Stanton number follows from meters. A positive value of the parameter corre-
1 sponds to a convergmg passage. These calcula-
St = 0—, . J tions are very expensive in computer time since

the stability limitation permits only a slow

- 1 - increase in Reynolds number and this factor

’ n ) reduced the number of combinations which

625 exp (ZR) + u] J (1/8) dy* could be examined. However, the calculation

was repeated for the same parameters for both

RESULTS uniform wall heat flux and uniform wall tempera-

The calculations outlined above were carried ture and the close similarity between the two

out on the Manchester University Atlas Com- was interpreted as convincing check of the

puter and the results in the form of Stanton numerical procedures.

number versus Reynolds number or y; are The results for uniform heat flux lie above

shown on Figs. 7, 8, 9 for different Prandtl those for uniform wall temperature but only at
numbers, pressure gradient parameters and un- Pr = 0-01 is the difference significant.

heated starting lengths. The influence of the presence of accelerating

Only two starting lengths are considered and decelerating flows is clearly significant. On

together with three Prandtl numbers and several the St-R plots the accelerating flows lie below

positive and negative pressure gradient para- and the decelerating flows above, the zero

[ m r—= T
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5 |—Pr=00 / L
108 3ol A 1]
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FIG. 8. Stanton numbers for different pressure gradients with a step in uniform heat flux at two values of Ri.
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Fi1G. 9. Stanton number variation with y;* for different pressure gradient parameters (step in temperaturc).

pressure gradient curves. Again the effects are
more significant at low Prandtl number. A
feature of the negative pressure gradients is that
the Stanton number curve may start to rise after
some increase of Reynolds number. This is
presumably due to the very high values of eddy
diffusivity which may be generated in such
boundary layers (see Fig. 6) which offsets the
opposite effect due to the growth in thickness of
the boundary layer.

It should also be noted that it is not possible
to carry calculations to such a high value of R
as for no pressure gradient. For the positive
parameters a point is soon reached where y."
becomes constant and here negative values of +
and hence of e, appear in the outer part of the
boundary layer (see Figs. 2, 3) and the pro-
gramme was automatically halted at this point.

Again for the negative parameters the growth
in y, is very rapid and it was only possible to
take this parameter to 5 < [0%—the limit of
Fig. 2.

However, curves such as Fig. 7 or 8 are not
strictly comparable as regards the influence of
different pressure gradients. Obviously the flows
in a converging and diverging duct are not
dynamically similar and such simple compari-
sons are deceptive. For example, for the same
inlet velocity and area, then a given Reynolds
number corresponds to a much shorter distance
in a converging duct than a diverging duct.

A numerical example may illustrate this point.
Consider a straight sided duct 4 ft long, end
areas 1 ft2 and 0-6 fi2. Air (p = 0-0807 lb/ft3,
Cp == 0-24) flows through the duct and the
velocity at the | ft2 section is 40 ft/s. The pressure
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Fic. 10. Variation of heat-transfer coefficient and wall shear stress along a converging and a

diverging passage—see example in text. (

gradient parameter corresponding to this situa-
tion is 440 x 10-8 depending on whether the
passage is treated as a convergence or a di-
vergence. Using equations (11) and (12) and
Fig. 7 for a uniform wall temperature then
Fig. 10 may be derived. This shows the local
heat-transfer coefficient and wall shear stress
variation along the length of the passage. For
this example the effect of the pressure gradient
on the heat-transfer coefficient is not large and
if the no pressure gradient curve of Fig. 7. had
been used then the maximum error would be
about —109%, for divergence and about +129
for convergence.

Experiments are being conducted to test the
analysis and it is hoped to report these in the
near future.

CONCLUSION

This analysis has shown that the use of the
universal form of the law of the wall will yield

a very complete description of the properties of

turbulent boundary layers. It is probable that
these properties, such as eddy diffusivity are
very sensitive to small changes in the form of the

convergence, — —~ — — — — divergence).

law of the wall. Certainly, the results obtained
in this article are only valid for equilibrium
boundary layers where the pressure gradients
are relatively small. Experiments are required to
discover the limits to which the assumptions may
be carried but it is suggested that, within these
limitations, the analysis provides a useful
method of solution to a wide range of practical
problems,
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through an incompressible turbulent boundary layer  10.
with varying free stream velocity and varying surface

Résumé—On montre, & partir de I'hypothese que la “loi universelle a la parol™ s’applique a la
couche limite turbulente pour des écoulements le long d’une paroi avec de faibles accélérations ou
décélérations, que Pépaisseur et la variation de la diffusivité turbulente & travers 'épaisseur peut
&tre obtenue pour n'importe quel nombre de Reynolds.

Avec 'hypothése supplémentaire que les diffusivités turbulentes pour la quantité de mouvement ¢t
fa chaleur sont égales, on a trouvé des solutions de ’équation de I'énergie afin d’obtenir les variations
du nombre de Stanton avec le nombre de Reynolds pour, soit une température pariétale uniforme, soit
un flux de chaleur pariétal uniforme. On a considéré deux valeurs du nombre de Reynolds pour le
début du chauffage, on a utilisé des nombres de Prandtl de 0,01, 0,7 et 10 et trois cas ont été examinés
pour certains paraméters de gradients de pression uniforms arbitrairement choisis correspondant a des

conduites uni-dimensionnelles divergentes ou convergentes.

Zusammenfassung—Unter der Annahme, dass das “universelle Wandgesetz™ aul’ die turbulente
Grenzschicht von geringfilgig beschleunigenden und verzdgernden Wandstromungen anwendbar
ist wird gezeigt, dass die Grenzschichtdicke und die Anderungen der turbulenten Austauschgrisse
abhingig vom Wandabstand fiir jede Reynoldszahi abgeleitet werden kann.

Mit der zusitzilchen Annahme, dass der turbulente Austausch von Impuls and Wirme gleich
ist, wurden Losungen fiir die Energiegleichungen ausgearbeitet, um Anderungen der Stanton zahl mit
der Reynoldszahl sowohl fiir gleichférmige Wandtemperatur als auch fiir gleichformige Wirmestrom-
dichte an der Wand zu erhalten: Fiir die Reynoldszahl an der Stelle des Heizbeginns wurden zwei Werte
angenommen und die Prandtizahlen 0,01, 0,7 und 10 wurden zugrundegelegt. Diese Fille wurden
untersucht fiir eine Anzahl beliebig ausgewihlter, gleichformiger Druckgradienten, fiir eindimen-

sionale divergierende oder konvergierende Stromungskanile.

Anvoramma—MexXos 13 JONYIEHNs 0 HPUMEHUMOCTH «YHHBEPCAILHOTO BakOHA CTCHEWY R
TYPOYJIEHTHOMY TOTPAHNUHOMY CJIOIO YIPH YMEPEHHOM YBeIUCHNI HAN Y MEHBIIe I CHOPOCTI
TEYEHUA BIOIL CTEHIM, MOKA3AHO, YTO BeJMUMHY M3MEHEeHMA TOJULMMHEL 1 Kosdduuuenrta
TypOyICuTHON FHAGYIMI TIO TOMUIHE MOMKHO OIMPEALATHD TP JOOBIX BHAYEHNAX KpUTepH
Peftuoansca.

{lpu ZONOTHNTCJABHC HOUYIEHMHM ¢ PaBeHCTEE TypPOYJICHTHONO JICPEHOCA ROIHYECTBA
JIBMAHEHUA M TENId NPOBeJEHH pellleHis YPABHEHHA HYHEPLHU AJIA OUpelesients UaMeHennii
kpuTepua CraHTOHA ¢ H3MeHeHnueM Kpurepufl Peifmoasica Rark UL CIyYass TOCTOMHHON
TeMIIePaTYPsl CTEHKM, Tak H A CJIy4as HOCTOAHHOrO TEIIOBOTO IOTOKA HA CTEHKE.

PaccMOTpPeHEL [Ba SHAYEHHA KpuTepmst Peltuombjpca, UpH KOTOPHIX HAUNHANCH Marpen.
HpunnMasmces saazenus kpurepust [pannras 0,015 0,7 1 10, u paceMarpusacicn paa npous-
BOJIBIO BHOPAHUBIX IAPaMeTPOB TIpajleHTa OXHOPOAHOrO JAABIASHHH, COOTBETCTBYIOHIMX

O;IHOMEPHBIM PAcCIMPARITIMCH WIH CYHANIMMCH KaHaIam.



