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Abstract-From the assumption that the “universal law of the wall” is applicable to the turbulent 
boundary layer for moderately accelerating and decelerating flows along a wall it is shown that the 
thickness and the eddy diffusivity variation through the thickness can be derived at any Reynolds 
number. 

With the addition4 assumption that the eddy diffusivities for momentum and heat are equal 
solutions were carriedtout to the energy equation to obtain Stanton number variations with Reynolds 
number for both uniform wall temperature and uniform wall heat flux. Two Reynolds number values 
were considered at which the heating commenced, Prandti numbers of 0.01,0*7 and 10 were used and 
these cases were examined for a number of arbitrarily chosen uniform pressure gradient parameters 
corresponding to one dimensional diverging or converging ducts. 
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NOMENCLATURE 

cross-sectional area of a converging or 
diverging passage; 
area of passage at x = 0; 
local coefficient of friction 
(= QJ/!W4; 
specific heat at constant pressure; 
local heat-transfer coefficient; 
unheated starting length; 
Prandtl number, v/a; 

wall heat flux; 

Reynolds number defined as 7 (us dx/v); 

Reynolds number at the posit!on 1 where 
the step in temperature or heat flux 
occurs; 
local Stanton number; 
temperature; 
wall temperature; 
free stream temperature (constant) ; 
velocity in the x direction; 
initial velocity at x = 0; 
free stream velocity (a function of x); 
dimensionless velocity, u/l/(~~/p); 
velocity component in the y direction; 
distance from the leading edge; 
distance normal to the wall; 

+ Y 3 

+ 
Ys 3 

a, 
89 
AR, 
AY+, 
l h, 
Em, 

8, 

dimensionless distance normal to the 
wall; 
y+ at the edge of the boundary layer 
where uf = uf - 
Pressure grad;ek parameter, 
U/U,) (dus/dR); 
thermal molecular diffusivity, k/p&; 

w+) + (4v>; 
step length in R; 
step length in y+; 
eddy diffusivity for heat; 
eddy diffusivity for momentum; 
dimensionless temperature 
(t - &u)l(fb - tw); 
dimensionless temperature, qw/pCPus; 
kinematic viscosity; 
density; 
shear stress; 
shear stress at the wall; 
stream function. 

INTRODUCTION 

THIS ARTICLE is an extension to an earlier one [l] 
in which a solution was presented to the problem 
of the heat transfer from a plate at uniform 
temperature, except for an initial length at the 
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stream temperature, to a fluid stream moving 
at constant velocity. The turbulent boundary 
iayer was assumed to be established from the 
leading edge. 

It has since been realised that the same pro- 
cedure can be applied to accelerating and 
decelerating flows if the same basic assumptions 
are postulated. These assumptions are: 

1. The fluid physical properties are constant, 
i.e. solutions are valid for only moderate 
temperature differences and velocities. 

2. The “universal law of the wall” applies 
throughout the whole thickness of the boundary 
layer. The model taken for the layer is that the 
same relation between ZK- and y+ applies at any 
value of R out to the valueyY when the velocity 
21; is reached. Beyond this value of Y,~ the di- 
mensionless velocity u,9! is constant. 

However, as R increases both y,) and u,$ in- 
crease. 

FIG. I. Assumed model of boundary layer. 

3. The eddy diffusivities for momentum and 
heat are equal. 

The second assumption is certainly not valid 
for flows with large pressure gradients such as in 
a wide angle diffuser where breakaway soon 
occurs or in a rapidly converging passage where 
the boundary layer quickly returns to laminar 
flow. With moderate pressure gradient however 
there is some evidence [2-61 that this approxi- 
mation is reasonable. Such cases occur in 
practice with flows in the hydrodynamic entrance 
region of ducts, between adjacent fins of a 
finned tube and over bluff bodies such as cones 
or wedges. 

OUTLINE OF PROCEDURE 

Under the above assumptions it will be shown 
that relations can be obtained, through the 
momentum equation, which yield the variation 
of thickness ys of the boundary layer with 
Reynolds number, R. Also at any given 
position the same analysis will give the variation 
through the boundary layer of the eddy diflusivity 
for momentum. 

These relations enable a numerical solution 
to be undertaken of the energy equation of the 
boundary layer which gives Stanton number- 
Reynolds number variations for different thermal 
boundary conditions. 

MOMENTUM EQUATION 

The procedure to be followed in transforming 
the momentum equation into the variables 
IL+ and yf is very similar to that given in [I]. 
In this extension however the free stream 
velocity 11,~ is not constant but is a function of 
v only. 

The well-known form of the momentum 
equation for the boundary layer is 

1311 l!Ll 1 i’7 dL1.y 
lf , 

r .\’ 
-t 1’ i,y 

p i’.V 
: !Is ’ 

d.\- 
(1) 

A stream function C/J is chosen to satisfy the 
continuity equation 

ilf I I‘ 

(‘I- (‘1’ 
0 (1) 

and 

Using the von Mises transformation yields. 

i:u 11 i’7 d1i.Y 
I/, _ 

~+ I”’ d.\l 
(3) 

( .\’ p i t/J 

Introduction of the dimensionless variables 
21+ and yf bearing in mind that T,,. is a function 
of x only yields 

The assumption that Eli is a function of _!’ 
only enables this to be written 
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dlCI 
dy+=VU+ 

and substitution for $ is now possible in (3) to 
obtain, 

au u a7 dus 
%= 

__ -- - 
pvuf ay+ + Us dx (4) 

The Reynolds number is defined in the form 

a! 

R= ___ 

J 

us dx 
V 

0 

Since R is a function of x alone and using the 
additional substitution 

u+us 
u=p 

U+ 8 

then (4) becomes 

1 a-r dus 
=pp+dR p U: us ay+ 

Expanding the L.H.S. 

Uf 

-[ 

us au+ 26 u+ au,+ u+ du, 

U+ .3 u,+aR 6 (u+)2 aR + u,+ dR 1 

Re-arranging 

Y+ 
7 

- = 1 - ‘g 
720 J 

(u+)2 dyf - 2 (@)3 y+ 

0 

- qt-1 (u+)sdy+] (6) 

0 

When 

y=y,+thenr=O 

Hence 
+ 

7; 1 (u+)2 dyf = 1 - 2 [(u,+)~ y! 

0 

- u,’ "Sb,, dy +] (7) 

0 

Substituting 

; =I +++$~(.+)2dy+ 

0 

1 a7 dua 
=---+dR P u,+ us aY+ 

The assumption of uf =f(y+) only means 
@u+/aR) = 0. The above may now be simplified 
to yield 

- (Uf)2 g = ; g+ + [(u,+)3 - u,f (u+)2] 

1 dus - -- 
us dR (5) 

Now at the wall y+ = 0, T = 7w and the above 
may be integrated to any position y+ 

v+ 
_ !!!!$! J (u+)2 dy+ = ?I$ 

0 

+Z (u$)~Y+ - u,f (u+)~ dy+ 
T I 
0 

where 2 is the pressure gradient parameter 

1 dus - .- 

0 

- Z[(u,+)sy+ - u,f z+(u+)s dy’] (8) 

Equation (7) essentially is an ordinary differential 
equation which will yield a relation between 
the dimensionless thickness y,+ and Reynolds 
number. Equation (8) for any chosen y$ will 
yield the variation of shear stress ratio. 

The eddy diffusivity for momentum variation 
follows from the shear stress ratio since 

Em T dy’ -- -_ -- 1 
V TW du+ 

Equation (7) may be rewritten 

(9) 

dR 
l+(u+)s dy+ 

--= 
dy: 1 - [(u,f)sy,+ - u,+ “j’(u+)s dy+] 2 

0 > 

;$ 
8 

us dR (10) 
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Since 

The above equations are fairly general and 
before proceeding to particular solutions it is 
worth pointing out two features: 

(a) It should be noticed that they apply to 
any form of the uf-y+ relation provided this 
does not change along the R direction. It is 
known that the relation obeys the well-known 
logarithmic law near to the wall but departs 
from this in the outer part-sometimes referred 
to as the wake. In this analysis the simple 
assumption will be made that the logarithmic 
form is obeyed for y-k > 26 but an extension to 
a different law for the outer part could be carried 
out. 

In the analysis Deissler’s form of the law of 
the wall is used namely, 

26 < y + < y,! 

(b) The pressure gradient parameter 

will in general be a function of the Reynolds 
number but in this analysis only constant values 
of the parameter have been considered since the 
analysis of this case is much simpler. For 
external flows, such as flow over a wedge, the 
parameter variation may be obtained from the 
potential flow and therefore quite independently 
of the boundary layer analysis. For internal 
flows, however, there will be coupling between 
the boundary layer analysis and the free stream 
variation. For example, in the entrance region of 
a duct with parallel walls the pressure drop is 
itself caused by the boundary layer growth. 
To include such coupling will complicate the 
analysis but it should still be possible through the 
same basic approach. 

If it be assumed that the boundary layers are 

thin, then constant values of the pressure gradient 
parameter will yield solutions to straight sided 
converging and diverging passages. The growth 
of the boundary layer in practice, however, 
implies that such solutions will only approxi- 
mate to these cases, perhaps better for con- 
vergences, and these solutions will, in fact. 
apply to passages with walls with some slight, 
but unknown, curvature. 

To apply the general solutions to be obtained 
to the simplified cases, useful expressions are. 

1 du, i’ d/i 

us dR - 1’ d.y (II) 

where c = usA (constant) 
and 

where Ai is the initial area of the duct. 

FRICTION FACTOR, SHEAR STRESS AND 

EDDY DIFFUSIVITY VARIATIONS 

It is unrealistic to assume that the growth of 
the boundary layer follows the universal law in 
the early stages near the leading stage. Neverthe- 
less, previous analyses in which the universal 
law was assumed from the leading edge have 
always shown good agreement with experi- 
mental friction factors. Accordingly this assump- 
tion has been used in this analysis and, although 
equation (IO) was solved for values of y: greater 
than 26, a correction was made to the Reynolds 
numbers for the growth out to ys’ m= 26. This 
correction was taken to be the same as for no 
pressure gradient namely RyJi 26 --= 4759 (see 
[l] for details). 

Figure 2 shows solutions to equation (10) 
namely, the R-y, relation for various 
constant values of the pressure gradient para- 
meter. Note that the pressure gradient does not 
affect the y,’ values near the leading edge. The 
figure also shows the rapid growth of J,’ for 
diverging flows (Z negative) and the converse 
for converging flows. 

Figure 3 shows shear stress ratios for an 
arbitrary selection of pressure gradient para- 
meters and at a particular value of Y,~’ . An im- 
portant feature of the positive pressure gradient 
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FIG. 2. Variation of dimmsionless thickness y,+ with Reynolds number R for arbitrary values of the 
pressure gradient parameter Z. 

parameter solutions is that at a sufficiently 
large Reynolds number the values of JJ,~ become 
constant. When this happens negative values of 
shear stress (and hence of eddy diffusivity) 
appear in the outer part of the boundary layer. 
This, of course, is impossible and solutions were 
discontinued beyond this point. Perhaps this 
point has some relation to that of “reverse 
transition” described by Kays and Moretti [7] at 
which the boundary layer returns to laminar 
flow. 

Schubauer and Klebanoff [S] obtained varia- 
tions of shear stress through the turbulent bound- 
ary layer. It is not possible to infer the value of 
y,+ to which their results apply but Fig. 4 gives 
a comparison between their experimental results 

and that obtained from the above relations for 
certain y,+ and pressure gradient parameters. The 
order of agreement is only moderate but it is 
quite possible that the comparison could be 
improved with the correct values of the pressure 
gradient parameter and J$. Brand and Persen 
[9] have also calculated shear stress variations 
using very similar methods to those given here 
but using Spalding’s form of the law of the wall 
[lo] and these agree well. 

Local friction factors are plotted on Fig. 5 and 
typical eddy diffusivity variations on Fig. 6. The 
latter curves form the main object of this section 
of the analysis and, together with the y,f-R vari- 
ation, permit a solution of the energy equation 
to be attempted. 
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FIG. 3. Distribution of shear stress through the boundary 
layer for different values of the pressure gradient para- 

FIG. 4. Comparison between predicted shear btrcss 
variations and the experiments of Schubauer and 
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Reynolds number, R 

FIG. 5. Friction factor variations for different valueslof the pressure gradient parameter 2. 
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0.6 

0,5 

I Prandtl number or starting length was calculated. 
! 

ZX lOa=-209 
Hence, sixth degree polynominal approximations 
were used for the R-y,‘; relation shown on Fig. 2. 

I The eddy diffusivity variations were calculated in 
the programme through equations (8) and (9). 
An initial choice of the increments of Ay+ was 

__.__ _ made and when the thermal boundary layer had 
grown to span the initial range of y,’ arrange- 
ments were made in the programme to increase 
the value of Ay+. The method used was to double 
the increment and discard intermediate values of 
the dimensionless temperature which produced a 
slight disturbance in the results. 

UNIFORM WALL TEMPERATURE 

The boundary condition here is 

6=1 ally+ x<f 

8=0 aty+=O x>l 

0 O-2 0.4 06 0.0 I.0 The problem was solved in two parts: (a) a 

Y’/ Y; 

FIG. 6. Distribution of eddy diffusivity through the 
boundary layer for different values of the pressure 

gradient parameter Z. (ye+ = 1000). 

ENERGY EQUATION SOLUTION 

The form of the energy equation, under the 
assumptions of constant physical properties and 
negligible dissipative effects, is the same as for 
zero pressure gradient, namely, 

or, using the same transformations as in the 
momentum equation, 

Subject to the boundary conditions discussed 
below the equation was solved by a finite 
difference technique which is described in detail 
in [l]. The computer programme was arranged 
to adjust the step length in Reynolds number to 
conform to stability limitations. 

Because the programme to solve the energy 
equation involves the momentum solution it 
would have been too wasteful of computer time 
to solve equation (IO) every time a different 

solution using small steps of Ay+-which -ias 
rather slow in increasing R; (b) a solution in 
which a steady state was assumed in the layer up 
toy+ = 26. 

A plot of results showed that solution (a) soon 
merged with that of(b) and beyond this point the 
solution (b) was used. 

UNIFORM WALL HEAT FLUX 
In this case it is necessary to define a new 

dimensionless temperature 0’ 
where 

8’ L- .-L-L 
4dP CP ui 

ut is the initial free stream velocity where R = 0. 
The energy equation takes the same form as 

above with this dimensionless variable. 
The boundary condition of uniform heat flux 

must be introduced into the numerical method 
and this was achieved as follows: 

where 

4w a + oh at - ------ zzz - 

P CP ui ut k) ay y-o 

= _ u.I-Ur 
s us 
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Now the pressure gradient parameter 

us = ut at R = 0 

:. R = i In z 

or 
us - = exp (ZR) 
m 

The quantity on L.H.S. above appears in the 
numerical method and is used to infer the next 
wall temperature (this is, in fact, the constant c 
of reference 1). 

The calculation was again carried out in two 
parts: (a) a solution near the nose using small 
steps of Ay+ = 2 out from the wall; (b) again 
assuming a steady state solution for the layer 
up toy+ = 26. 

In fact, it was found that the solution near 
to the step was hardly affected by the pressure 
gradient and only a few calculations of this type 
were made. 

For the assumption (bf we obtain 

Values of 

are given in [l] for dikerent Prandtl numbers. 

Reynolds number, R 

Fro. 7. Stanton numbers for different pressure gradients with a step in uniform surface temperature &t two 
values of RI. 
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The Stanton number follows from 

,,=$.; 
w 

1 

RESULTS 

The calculations outlined above were carried 
out on the Manchester University Atlas Com- 
puter and the results in the form of Stanton 
number versus Reynolds number or y,’ are 
shown on Figs. 7, 8, 9 for different Prandtl 
numbers, pressure gradient parameters and un- 
heated starting lengths. 

Only two starting lengths are considered 
together with three Prandtl numbers and several 
positive and negative pressure gradient para- 

meters. A positive value of the parameter corre- 
sponds to a converging passage. These calcula- 
tions are very expensive in computer time since 
the stability limitation permits only a slow 
increase in Reynolds number and this factor 
reduced the number of combinations which 
could be examined. However, the calculation 
was repeated for the same parameters for both 
uniform wall heat flux and uniform wall tempera- 
ture and the close similarity between the two 
was interpreted as convincing check of the 
numerical procedures. 

The results for uniform heat flux lie above 
those for uniform wall temperature but only at 
Pr = 0.01 is the difference significant. 

The influence of the presence of accelerating 
and decelerating flows is clearly significant. On 
the St-R plots the accelerating flows lie below 
and the decelerating flows above, the zero 

Reynolds number, R 

FOG. 8. Stanton numbers for different pressure gradients with a step in uniform heat flux at two values of Rt. 
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i / 

FIG. 9. Stanton number variation with J’~ for difl‘erent pressure gradient parameters (step 111 temperattlrc) 

pressure gradient curves. Again the effects are 
more significant at low Prandtl number. A 
feature of the negative pressure gradients is that 
the Stanton number curve may start to rise after 
some increase of Reynolds number. This is 
presumably due to the very high values of eddy 
diffusivity which may be generated in such 
boundary layers (see Fig. 6) which offsets the 
opposite effect due to the growth in thickness of 
the boundary layer. 

It should also be noted that it is not possible 
to carry calculations to such a high value of R 
as for no pressure gradient. For the positive 
parameters a point is soon reached where y$ 
becomes constant and here negative values of T 
and hence of cVL appear in the outer part of the 
boundary layer (see Figs. 2, 3) and the pro- 
gramme was automatically halted at this point. 

Again for the negative parameters the growth 
in y, is very rapid and it was only possible to 
take this parameter to 5 :I IO”--the limit of 
Fig. 2. 

However, curves such as Fig. 7 or 8 are not 
strictly comparable as regards the influence of 
different pressure gradients. Obviously the flows 
in a converging and diverging duct are not 
dynamically similar and such simple compari- 
sons are deceptive. For example, for the same 
inlet velocity and area, then a given Reynolds 
number corresponds to a much shorter distance 
in a converging duct than a diverging duct. 

A numerical example may illustrate this point. 
Consider a straight sided duct 4 ft long, end 
areas 1 ft* and 0.6 ft2. Air (p -= 0.0807 lb/f@, 
Cp -~= O-24) flows through the duct and the 
velocity at the 1 fte section is 40 ft/s. The pressure 
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Distance clang possoge. fr 

FIG. 10. Variation of heat-transfer coefficient and wall shear stress along a converging and a 
diverging passage-see example in text. (&------ convergence, - - - - - - divergence). 

gradient parameter corresponding to this situa- 
tion is -&Xl x 10-s depending on whether the 
passage is treated as a convergence or a di- 
vergence. Using equations (11) and (12) and 
Fig. 7 for a uniform wall temperature then 
Fig. 10 may be derived. This shows the local 
heat-transfer coefficient and wall shear stress 
variation along the length of the passage. For 
this example the effect of the pressure gradient 
on the heat-transfer coefficient is not large and 
if the no pressure gradient curve of Fig. 7. had 
been used then the maximum error would be 
about -10% for divergence and about +12x 
for convergence. 

Experiments are being conducted to test the 
analysis and it is hoped to report these in the 
near future. 

CONCLUSION 

This analysis has shown that the use of the 
universal form of the law of the wall will yield 
a very complete description of the properties of 
turbulent boundary layers. It is probable that 
these properties, such as eddy diffusivity are 
very sensitive to small changes in the form of the 

law of the wall. Certainly, the results obtained 
in this article are only valid for equilibrium 
boundary layers where the pressure gradients 
are relatively small. Experiments are required to 
discover the limits to which the assumptions may 
be carried but it is suggested that, within these 
limitations, the analysis provides a useful 
method of solution to a wide range of practical 
problems. 
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RBsum&On montre, a partir de I’hypothese que la “loi universelie a la paroi” s’applique h la 
couche Iimite turbulente pour des ecoulements Ie long dune paroi avec de faibles accelerations ou 
decelerations, que l’ipaisseur et la variation de la diffusivite turbulente a travers I’epaisseur peut 
Ctre obtenue pour n’importe quel nombre de Reynolds. 

Avec I’hypothCse supplementaire que Ies diffusivites turbulentes pour Ia quantite de nlouveillent et 
la chaleur sont &gales, on a trouve des solutions de I’equation de I’energie afin d’obtenir Its variations 
du nombre de Stanton avec Ie nombre de Reynolds pour, soit une temperature parietale uniforme, soit 
un flux de chaleur parietal uniforme. On a considere deux valeurs du nombre de Reynolds pour le 
d&but du chauffage, on a utilise des nombres de PrandtI de O,OI, 0,7 et 10 et trois cas ont et& examines 
pour certains parameters de gradients de pression uniforms arbitrairement choisis correspondant & des 

conduites uni-dimensionnelles divergentes ou convergentes. 

Zusammenfassung-Unter der Annahme, dass das “universelle Wandgesetz” auf die turbulente 
Grenzschicht von geringfiigig b~chleunigenden ~lnd.,verz~g~rndcn Wan~tr~nlunge~~ anwendbar 
ist wird gezeigt, dass die Grenzsch~chtdicke und die Anderungen der turbulenten Austauschgriisse 
abhlngig vom Wandabstand fur jede Reynoldszahl abgeleitet werden kann. 

Mit der zusatzilchen Annahme, dass der turbulente Austausch von Impuls and WBrme gteich 
ist, wurden LSsungen fur die Energiegleichungen ausgearbeitet, um Anderungen der Stanton zahl mit 
der Reynoldszahl sowohl fur gleichfiirmige Wandtem~ratur als such fiir gleichformige WBrmestrom- 
dichte an der Wand zu erhalten: Fiir die Reynolds~hl an der Stelle des Heizbeg~ns wurden zwei Werte 
angenommen und die Prandtlzahlen O,OI, 0,7 und IO wurden zugrundegelegt. Diese EPIIe wurden 
untersucht fiir eine Anzahl beliebig ausgewahlter, gleichformiger Druckgradienten, fur eindimen- 

sionale divergierende oder konvergierende StrBmungskanBIe. 


